Scientific / Metrology Instruments

Ultra-High Mass-Resolution MALDI-TOFMS System

Solutions for Innovation

JMS-S3000
SpiralTOF -plus 2.0

The JMS-S3000 is a MALDI-TOFMS that incorporates
JEOLSs unique SpiralTOF ion optics system.

Featuring unprecedented levels of mass resolving power
and sensitivity, the system has been acknowledged for
its distinctive capabilities in many scientific studies.
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Towards the pinnacle of MALDI-TOFMS

In pursuit of optimal performance,
Introducing JMS-S3000 SpiralTOF™-plus 2.0

The JMS-S3000 is a MALDI-TOFMS™ that incorporates the innovative SpiralTOF ion optics.

The JMS-5S3000 has evolved into SpiralTOF™-plus 2.0 with much wider dynamic range.
The JMS-53000 defines a new standard in MALDI-TOFMS performance and provides state-of-the-art
analytical solutions for a wide range of research areas such as functional synthetic polymers, materials

science, and biomolecules.
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Development of multi-turn time-of-flight
loe. ............ S R

- Development of “perfect focusing” and
“multi-tum” technologies
- Realization of multi-turn time-of-flight mass

spectrometer
! Initial introduction of SpiralTOF™
010 - Development of Spiral TOF ion optics

- Mass resolving power: 60,000
- Mass accuracy: 1 ppm (internal calibration)

Improved version of SpiralTOF™ introduced
014 ......................................................................................

- Mass resolving power: 75,000
- Ultra-high mass-resolution MS imaging

Polymer analysis program
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JEOL conducted collaborative research with the Graduate School of Science, Osaka University, to develop an ultra-high
mass-resolution TOFMS that exceeds the reflectron used in the AccuTOF™ series by extending the flight distance. As the
result, we proposed a multi-turn ion optics with a variable flight distance™. However, in multi-turn TOFMS, there is a problem
that faster (lighter) ions overtake slower (heavier) ions when the number of flight cycle is increased. The spiral trajectory ion
optics system was proposed as a solution to this problem™. JEOL has developed a SpiralTOF ion optics system based on
the MULTUM Il multi-tumn ion optics developed by the Graduate School of Science, Osaka University, and In 2010, launched
JMS-S3000 SpiralTOF™ by combining the SpiralTOF ion optics with a matrix-assisted laser desorption/ionization (MALDI) ion
source. SpiralTOF™ succeeded in ensuring a long ion flight distance of 17 m in a limited space, achieving the highest mass
resolution among all commercially available MALDI-TOFMS at the time.

The legacy of the SpiralTOF™ series continues to the SpiralTOF™-plus 2.0 (and beyond).

*1 lon Optics for Multi-turn Time-of-flight Mass Spectrometers with Variable Mass Resolution: T. Matsuo, M. Toyoda, T. Sakurai and M. Ishihara,
J. Mass Spectrom., 32 (1997), 1179-1185.
*2 Spiral Orbit Time of Flight Mass Spectrometer, Hisashi Matsuda, Jounal of the Mass Spectrometry Society of Japan, 48, 303-305, 2000
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MAL[?I-TOFMS for the next generation

Setting the new standard in MALDI-TOFMS performance

—

To improve the mass resolving power and mass accuracy of a time-of-flight mass spectrometer, the flight distance must
be extended while keeping a group of ions having the same m/z (an ion packet) from diverging in space. The innovative
SpiralTOF ion optics was developed by JEOL based on the “Perfect focusing™ and “Multi-turn™” principles. The ion
packets are focused back in space at every fixed distance (i.e., each figure-eight trajectory) during the flight. Thus, even
after the extended flight distance, the ion packets do not diverge at the detection plane, achieving high mass resolving

power, high mass accuracy, and high ion transmission.

= Flight distance of SpiralTOF™-plus 2.0 = 17 M m————
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The ion packets are focused back in space at every fixed distance

during the flight and do not diverge at the detection plane.

Mass resolutions observed with a mixture of peptide standards.
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M Reduced topographic effect of matrix crystal

The topographic effect of the matrix crystal leads to a
difference in flight start position for the ions, resulting in a
difference in flight time. In the conventional ion optics system,
this time difference degrades the mass resolving power
and also the mass accuracy obtained with external mass
calibration. With its extended flight distance, the JMS-S3000
reduces this effect to the minimum and achieves highly
reproducible mass resolving power and high mass accuracy
with an external mass calibration.

High mass-resolution and mass accuracy can be maintained
for imaging analysis of a biological specimen in which a large
number of mass spectra are acquired across a large area and
the specimen surface is likely to be uneven.

Acceleration

direction A difference of flight
time arises due to the
topographic effect of the
matrix crystal.
Matrix + sample

Target plate

[M+H]* of ACTH fragment 18-39

The wide dynamic range of the
SpiralTOF™-plus 2.0 enabled the
detection of even minor isotope peaks
with an accurate intensity ratio.

Observed
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* 1 Perfect Spatial and Isochronous Focusing lon Optics for Multi-tum Time of Flight Mass Spectrometer: M. Ishihara, M. Toyoda and T. Matsuo, Int. J. Mass Spectrom., 197, 179-189, 2000
* 2 Multi-turn Time-of-Flight Mass Spectrometers with Electrostatic Sectors: M. Toyoda, D. Okumura, M. Ishihara and |. Katakuse, J. Mass Spectrom., 38, 1125-1142, 2003
* 3 Japanese patents 4980583, 5238054, 5226824 US patents 7504620, 7910879, 8237112 (as of August 2021)
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Intersity

Intersity

The SpiralTOF™-plus 2.0 has realized a wide dynamic range by greatly improving the detection system. This makes it
possible to simultaneously detect peaks with ion intensity differences of about 4 orders of magnitude. Also, the analysis of
trace components has become easy in mass spectrometry imaging measurements, in addition to the conventional bulk
sample measurements. Below is the measurement example of a mixture of polyethylene oxide and polypropylene oxide in
the ratio of 1,000:1. In the case of polymer analysis, when combined with the Kendrick Mass Defect (KMD) analysis, it is
possible to analyze trace components that are otherwise difficult to detect.
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The mass spectrum of a mixture of polyethylene oxide and polypropylene oxide in the ratio of 1000:1.

The SpiralTOF™-plus 2.0 can realize a wid
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Calculated values of molecular weight distribution

@ Polyethylene oxide [M+K]*
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3 @ Polyethylene oxide [M+Na]*

® Polypropylene oxide [M+Na]*

Total ion intensity | Number average Weight average Polydispersity
(%) molecular weight | molecular weight

89.83 1460.80 1492.87 1.0220
2112.30 2132.53 1.0096
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TOF-TOF Option

A benchmark of structural elucidation by MS/MS

kg
'_a.

MS/MS utilizing the high selectivity of the Spiral TOF ion optics

M Features

- By adopting the SpiralTOF ion optics as the first MS, the high precursor ion selectivity can be
realized. The monoisotopic peak of precursor ions can be properly selected.

- High-energy collision-induced dissociation(HE-CID) allows for the acquisition of product ion
mass spectrum rich with structural information.

- Offset parabolic reflectron, JEOL's patented technology, enables acquisition of all product ion
information from m/z 5 to the precursor ion, and facllitates to obtain structural information of
high reliability.

- In structural analysis of organic compounds, the accuracy of composition determination using
accurate mass in Spiral mode can be improved by determining the adduct ion, in addition to
the structural information obtained by HE-CID.

- In elucidation of amino acid sequences of a peptide, distinguishing structural isomers such
as leucine and isoleucine is possible, as a feature of HE-CID. It is also possible to confirm the
presence/absence of amino acids in a peptide by the presence/absence of immonium ions.
(refer to p.21).

- For the analysis of additives, surfactants, and lipids, the structural analysis of alkyl chains is
important. With HE-CID, it is possible to estimate the alkyl chain length and the positions of
double bonds (refer to p.22, 23, 24).

- For structural analysis of polymers, it is possible to confirm the ion type (adduct ion) and the
mass of the end groups from the product ion mass spectrum. It is possible to improve the
accuracy in structure elucidation in combination with the elemental composition estimation
result with the Spiral mode (refer to p.10).

Product ion mass spectrum of poly(oxypropylene)
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Reflectron  ——e
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Since the SpiralTOF™-plus 2.0 can select monoisotopic ion,
it is obvious that the two product ions with a 2 u difference

are not isotopic ions and have different structures. Precursor ion: m/z 1027

Na* at m/z 23
confirms that
the precursor
ion is sodiated
molecule.
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* Japanese patents 4688504, 5220574 US patents, 8330100 (as of August 2021)

5 | JMS-S3000 SpiralTOF™-plus 2.0



[psosa

[—
Linear TOF Option

Routlne anaIyS|s of high molecular weight compounds
e |

e

Linear TOF option looking over a wide mass range

M Features

- In the Linear TOF option, the ions travel from the ion source to the detector unaffected.
- When ions undergo post source decay (PSD) in flight, the produced fragment ions and neutrals
continue to fly at the same velocity as before fragmentation. Hence, in a Linear mode mass

Detector for ) :
Linear Mode spectrum, they are detected as the same signal as that of the ions that have not fragmented.
Therefore high molecular weight compounds that tend to undergo PSD can be measured with
high sensitivity in the Linear mode.
| - The combination of Spiral and Linear modes further expands the range of analytes that can be
‘ measured.
Il M Usage
| JETORMS:
SpiralTOF - Useful for screening of molecular weight distribution of polymers.
- It is possible to calculate the molecular weight distribution & polydispersity of polymer samples

with various masses ranging from several thousands to several tens of thousands.

- It is possible to measure high-mass samples of molecular weight over 10,000 Da such as
intact proteins, with high sensitivity (refer to p.19)

- It enables high-sensitivity measurement of samples that can easily undergo PSD, such as
proteins and polysaccharides.

Mass spectra of poly(styrene) 40K, 100K, and 200K
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JMS-S3000 SpiralTOF™-plus 2.0

Why high mass-resolving power is required for MS imaging?

MALDI MS imaging was initially developed to focus on high molecular weight compounds such as proteins and
peptides. However, with the expanding applications of MALDI MS imaging, the interests have shifted to include
smaller molecules such as lipids, pharmaceuticals, and pharmaceutical metabolites. Conventional MALDI -
reflectron TOFMS has difficulty discemning small molecule signals from those of matrix. In the case of MALDI MS
imaging, signals from unwanted molecules on the specimen surface will often interfere with signals from the target
analytes. High selectivity by means of high mass-resolving power is essential for obtaining reliable target analyte
spatial distributions.

The SpiralTOF™-plus 2.0 with its high mass-resolving power is indispensable for MALDI MS imaging.

A tissue section is placed on an ITO-coated glass
slide, and matrix solution is sprayed onto the surface.

The specimen is moved beneath the focused laser beam
to create a time dependent series of mass spectra where
each time corresponds to a specific spatial location.
Analysis of the data allows the researcher to visualize the
spatial distribution of specific compounds on the sample
surface.

Mass spectrometry imaging data can be analyzed with
the JEOL msMicrolmager™ software or converted to a
common data format imzML which allows data analysis
by SCILS Lab MVS (optional) or other third-party software
such as BioMap.

Intensity
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Mass Spectrometry Imaging Analysis of Lipids in Mouse Brain Tissue Section

Mouse brain sections contain a variety of lipid classes. A mass spectrum obtained from the tissue section is highly complex, especially
in the region of m/z 700 - 1,000. Many of the peaks in the mass spectrum are less than 10% of the base peak, representing
minor components. MALDI MS imaging of lipids requires a mass-resolving power high enough to separate the minor peaks from
interferences. The bottom mass spectrum below shows the expansion of m/z 820 - 823. Many peaks were separated from each
other by less than 0.1 u. The high mass-resolving power of the SpiralTOF™-plus 2.0 clearly separated these isobaric peaks, thus
allowing the elucidation of 4 lipid elemental compositions. Moreover, each lipid clearly showed a different spatial distribution. Elucidation
of elemental compositions and accurate determination of spacial distributions for each lipid would be difficult with a conventional
reflectron TOFMS with moderate mass-resolving power.

Averaged mass spectrum of a mouse brain tissue section
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Separation of isobaric ions and their MS images.
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PE: Phosphatidyl ethanolamine, PC: Phosphatidyl Choline, GalCer: Galactosylceramide
The data were acquired in a joint research project with the Mass Spectrometry Group, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University

The tissue section specimen was provided by Awazu laboratory, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University.
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JMS-S3000 SpiralTOF™-plus 2.0
Polymer Analysis

Why is the SpiralTOF™-plus 2.0 good at analyzing synthetic polymers?

Synthetic polymers are polydisperse which means that they have a molar mass distribution. As a result,
homopolymers with a variety of end groups and copolymers are highly complex mixtures. It is important to
maintain ultra-high mass resolution over a wide mass range for the analysis of synthetic polymers. It is also
important to resolve trace components from major components and other unwanted interferences. The
SpiralTOF™-plus 2.0 ion optics, which consists of energy-filtering electric sectors, eliminates chemical noise
derived from post source decay (PSD) and resolves trace components from other sample components.
Synthetic polymer analysis requires high mass-resolving power over a wide mass range and wide dynamic range
with low chemical noise. The SpiralTOF™-plus 2.0 satisfies both requirements. JEOL also provides optional
software specifically designed to analyze complex mass spectra of synthetic polymers.

MALDI-TOFMS mainly produces single-charge ions, so polymer of high polydispersity is observed over a wide mass range.

The figure below shows the analysis example of polymethyimethacrylate (PMMA) at m/z 2,000 to 9,000. The SpiralTOF™-plus 2.0 can
realize high mass resolving power and high mass accuracy over a wide mass range, due to the features of the Spiral TOF ion optics.

Mass spectrum of polymethylmethacrylate (PMMA) (m/z 2,000 — 9,000)

The SpiralTOF™-plus 2.0 achieves high mass resolving power over a wide mass range which is required
for the analysis of polymers.
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End-group analysis of polymers

By combining SpiralTOF™-plus 2.0 with msRepeatFinder (optional), mixtures of homopolymers with different end groups can be separated
and grouped. For each group, it is possible to calculate the index values of molecular weight distribution (number average molecular

weight, weight average molecular weight, and polydispersity).

It is also possible to elucidate the elemental compositions of polymer end groups from the accurate masses. However, it is not possible
to determine the degree of polymerization (or the mass of an end group) or adduct ion information of a polymer species from the accurate
mass alone. By utilizing the functions of TOF-TOF option, it is possible to determine the information.

Mass spectrum of a polyethylene oxide mixture with different end groups
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The elemental composition elucidation result of the end group for group @ is shown. The 4 candidates have the same elemental
composition, but different degree of polymerization. The information obtained from the TOF-TOF option are utilized to narrow down
the candidates. Since a m/z 23 peak was observed in the product ion mass spectrum, it is known to be an Na adduct ion. The
characteristic neutral loss indicates that the size of one end group is about 254 u and the other is relatively small. As a result, we
could estimate that it was the polyethylene oxide which has an end group of C H,, /OH.

CieHay C,H,0 1217.83200

CmHaa C,H,0 23 Na 1217.83200

@ C,H,,0, C,H,0 20 Na 1217.83200
@ C,,H,:0, C,H,0 19 Na 1217.83200

Product-ion mass spectrum and RKM plot of group @

1|<e— m/z 23 Na*
Adduct ion can be confirmed by TOF-TOF.
Since Na* is observed, it can be determined as [M+Na]*.

A peak with strong ion intensity is
confirmed at 254 u from the precursor ion.
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Analysis of an anionic surfactant

It is sometimes highly effective to analyze an anionic surfactant, which has a sulfate group or phosphate group as an end group, in the
negative ion mode. Below are the analysis examples of detergent containing alkyl ether sulfate ester (AES) and polyoxyethylene alky ether
(POEAE). In the positive ion mode, POEAE was mainly observed. However, by using KMD plots, AES can be also confirmed. On the other
hand, only AES was observed in the negative ion mode. By obtaining product-ion mass spectrum in the negative-ion mode with the TOF-

TOF option, it can be estimated that the end groups are alkyl chain(C, ,H,.) and suifate group respectively.

Positive ion mode
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Analysis of copolymers

It is important to use high mass resolution to analyze copolymers, which consist of two or more species of monomer. The SpiralTOF™-
plus 2.0 can separate many isobaric ion peaks (which have the same nominal mass but different accurate mass) on a mass spectrum.
Since the mass spectra of copolymers are complicated, it is not practical to assign peaks one by one. The KMD analysis using
msRepeatFinder(optional) makes it possible to visualize the distribution of polymer species. Below is the analysis example of EO-PO
block copolymer. The enlarged mass spectrum shows that peaks that are less than 0.03 u apart are clearly separated by a high mass
resolution. By visualizing the mass spectrum by using KMD plot(base unit: PO), a lattice is seen reflecting the PO distribution on horizontal
axis and the EO distribution in a diagonal direction.

Mass spectrum and KMD plot of EO-PO block copolymer
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Differential analysis of 2 polymer samples

The differential analysis of the end groups and molecular weight distributions of polymer samples is very important for checking the
degradation of a sample, difference between production lots, and difference in the synthesis processes. msRepeatFinder(optional) can
perform the differential analysis of two samples. Below is the application example used for the degradation analysis of polyethylene
terephthalate. The bottom left shows the mass spectrum before and after the degradation. Before the degradation, cyclic oligomers, and
after the degradation, the series having the COOH/COOH end groups were observed as major components respectively. For performing a
differential analysis, each sample was measured three times. The bottom right is the result of the differential analysis shown in KMD plots.
The red shows the stronger peaks before the degradation, while the green shows the stronger peaks after the degradation. In addition, a
volcano plot can be created to confirm the components that differ with statistical significance between 2 samples.

Mass spectra of PET samples before and after degradation KMD plot of differential analysis result
- be I
100 ? .
ol b Before degradation :; P
X P T
E 2 o1 '. [ N ] 1] 3 . . . .
g g Sool 9 o0 o ot 4 1 .
Eg g‘& fs Ez §§ 2. g3 s g x-ui ¢
188 |8 $f 538 & =3 5 :
ge 1% i¢ |§s 7% 3% B2 RE % al
00 1200 1400 1800 1800 2000 200 240 w0 me 03| °
-0.4 .
. -05
After degradation T 800 1000 1200 1400 1600 1800 2000 2200 2400 NKM
Volcano plot of differential analysis result
g . .
2z & [ —— I —
. = z E - % w 2 r h u
slE g7R #f In Iz in o 3s ! i i
% Lal H.’I, i 1% 35 8% 3% I I
- " - o - . o 7 IS Y O F—
1q - . :._: 1
il T
[ SRS R I S—_—
il m
] o s =
T T T I 3
Logl{VE)

JMS-S8000 SpiralTOF™-plus 2.0 | 12



A Wide Range of Applications
Polymers

Compositional Analysis of an Industrial Surfactant*

Molar mass and compositional distributions of an industrial surfactant were analyzed by using a KMD plot. The sample was marketed as
"polyethlene oxide (PEQO) monostearate." The KMD plot revealed that the sample contained not only monostearate but also monopalmitate,
molecules with hydrophobic groups on both ends (distearate, dipalmitate, and monostearate-monopalmitate,) and free, unreacted
polyethylene oxide.

Sample: "polyethlene oxide monostearate"
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Compositional Analysis of Surfactants in a Hair Shampoo*

Surfactants in a commercial hair shampoo were analyzed. A large fraction of the major component, sodium laureth sulfate (SLS), was
washed out on the target plate*™ in order to detect minor components. The acquired mass spectrum was highly complex, but the KMD
plot facilitated clear visualization of various components down to the trace ones. The compositional distribution of PEO hydrogenated
castor oil, which is known to be difficult to analyze, was clearly visualized.

Mass Spectrum
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LC-MALDI Analysis of an EO-PO Random Co-polymer (MSTips No. 203)

Since MALDI cannot be directly coupled with a chromatograph, detection of very minor components in a highly complex mixture can be
difficult. Fractionating a complex sample with high-performance liquid chromatography (HPLC) or size exclusion chromatography (SEC)
reduces ion suppression effects, thus facilitating the detection of many more components in the sample.
To do this, the eluent from the major peaks in a HPLC/SEC chromatogram can be fractionated, or eluent fractions can be collected at
equal time intervals. Each fraction is then mixed with matrix and cationization agent solutions and deposited on the target plate. A mass
spectrum of each fraction is then acquired in an automated fashion and visualized as 3 dimensional data.

Collect fractions at
equal time interval.

HPLC/SEC
o0

Result of EO-PO random copolymer analysis by LC-MALDI (Survey View heat map)
Separation by HPLC and change of molecular weight distribution are visualized.
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Change of mass spectra based on the retention time.
Many new peaks were observed as ion suppression was reduced by HPLC fractionation.
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Mass spectrometry imaging of polymers

Mass spectrometry imaging can be applied to polymers. Two spots are prepared by adding two antioxidants - Irgafos 168 (BASF)
and Irganox 1010 (BASF) - to polymethylmethacrylate (PMMA). The ultraviolet irradiation was performed to the right spot only and its
degradation was visualized by using mass spectrometry imaging. For polymers, it is possible to visualize the quantitative change in both
polymers and additives. It is also possible to capture the changes in the average molecular weight and polydispersity.

MS imaging of PMMA, Irgafos 168, and Irganox 1010

Irgafos 168 Irganox 1010 PMMA main components before UV irradiation ~ PMMA Increased components after UV irradiation
[M+H]* [M+Na]* [M+Na]* [M+Na]*

0 100%
3600
,// d (a) Average mass spectrum of left spot
(without ultraviolet irradiation)
1700 Aﬂ'“"nlll IJL_

(b) Average mass spectrum of right spot
(with ultraviolet irradiation)

800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 m/z

1.065 EEEE——.080 3,207 IR 3,594

ace analysis of polymeric materials

Use of mass spectrometry imaging makes it possible to analyze the localization of a compound on the fim surface. Below illustrates the
change of oligomer on the surface of polyethylene terephthalate film, by photooxidation degradation through ultraviolet irradiation.

i L Summed mass spectrum
() Main components observed
before degradation:
Cyclic oligomer

700 <4

600
192 u

5009 |
(I) Photooxidation products:

COOH/COOH end

Intersity

(I} is standardized by (1)
A baldtas aia i
1600 2000 2400 mx
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Measurement of high molecular weight additives

MALDI is capable of soft ionization of high molecular weight additives. The figure below shows a measurement example of ADK STAB
LAB8 (ADEKA), a high molecular weight hindered amine light stabilizer.
It is possible to check the molecular weight distribution in Linear mode and estimate the elemental composition in Spiral mode.

Mass spectrum in Linear mode (m/z 200 - 8,000)
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Mass spectrum in Spiral mode (m/z 800 - 2,700)
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A Wide Range of Applications
Organic Electronic Materials

It is important to understand the deterioration mechanism of organic electric materials in order to prolong the life time of the
device. MS imaging allows the determination of spatial distributions for specific compounds. By comparing a MS image
with an optical microscope image that shows deteriorated areas, compounds specific to the deteriorated areas can be
differentiated.

Deterioration analysis of an organic light-emitting diode panel*

Top, from left to right: MS image of m/z 456 (a compound specific to the deteriorated area), m/z 588 (a-NPD; the major component), optical
microscope image. Bottom: average mass spectrum of the whole observed area.

Optical microscope image
(anode pealed)

I,ixlo’:—- i
1.0x10° —
of o-NPD O
E::x.ZE_ Major componentsin OLED. Q ”" Q
4.un|o‘§— @
2.0%10° E_ tI B ) . . B . _L a
500 600 700 200 900

* This data was acquired in a collaborative research effort with AGC Inc.
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A Wide Range of Applications

Organic Chemistry

The SpiralTOF™-plus 2.0 facilitates accurate mass measurements of small and large molecules.

Previously, MALDI-TOFMS systems were not suitable for the analysis of small molecules as matrix-derived peaks and
continuous chemical noise interfere with the signal from analyte molecules. The SpiralTOF ion optics have solved these
problems.

Analysis of a common cold medicine (MSTips No. 241)

The masses of the 7 active ingredients have been determined within 0.0014 u. Matrix-derived peaks have been used as internal mass
references.

Methylephedrine Isopropamide
Observed 180.1375 u Observed 353.2573 u
Error -0.0008 u Error -0.0014 u
X104 L

4.20 A Caffeine

4.00 1 Observed 195.088 u

3801 Tranexamic acid Error +0.0003 u

3801 Opserved 158.1166 u

3.40 4
220 | Error -0.001 u Chlorpheniramine

3.00 Observed 275.1300 u
2.80 4 Error -0.001 u

2,60
2.40 A
220
2,00
1.80
1.60

1.40 4
Acetaminophen  ———zp 4

Observed 152.0707 U 1.0p 4

Error 0.0001 u 0.80 §
0.60 4
0.40 4 \/
0.20 4 |
0.00 4 e = oy

140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 3501520

Dihydrocodeine
Observed 302.1747 u
Error -0.0004 u

Intensity (arb. units)

Analysis of boroxin cage 12-mer *

Isotopic peaks are completely separated in the high-mass region thanks to the ultra-high mass-resolving power. For high molecular weight
compounds, the abundance of the monoisotopic ions are very small and difficult to observe. The elemental composition of the molecule
can be confirmed by the observed m/z of the most-abundant ion and/or comparing the isotopic peak pattern with that of the simulation.

malfrix: DCTB, additive: AgTFA

3 [M+Ag]*
] " | Observed
] 3 l | ‘ l
3 | |
%@A'J.&EE&.-,‘:.:L.“,’*:L‘“::‘::‘::
] ’ l Simulation
it -] most abundant mass @ A= CuHz | | ‘ | [ ‘ |
Simulated exact mass @ m/z 9261.05893 | | L] J |

7 Observed accurate mass : m/ 9261.05966 ] ' | | MY ' I,

error (u) : -D.00073u e LA . ...

error (ppm) © 0.08 ppm good agreement
E with theoretical isotopic pattern

[9-mer+Ag]*
: . N o ) , “ L (Sample courtesy of Prof. lwasawa,
oo o0 ot e Bhon B000 o 000 e The Tokyo Institute of Technology)

* Self-Assembly of Nanometer-Sized Boroxine Cages from Diboronic Acids, Ono, K., et al., J. Am. Chem. Soc. 2015, 137 (22), 7015-7018, DOI: 10.1021/jacs.5b02716
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Structural analysis of small molecules

Below is the structural analysis example of reserpine after photodegradation. The [M+H]* of reserpine and its degradation products were
observed with a 2 u difference. It is possible to obtain the product ion mass spectrum for each by the high precursor ion selectivity of
SpiralTOF™-plus 2.0's TOF-TOF option.  The product ion mass spectra are quite different between the two, and the structure can be
elucidated from the characteristic product ions of each.

Mass spectrum of mixture of reserpine and its degradant
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A Wide Range of Applications
Proteins

The molecular weight of an intact protein can be measured by using linear mode.

A mass spectrum of intact immunoglobulin G (IgG) measured with linear mode

1 [1] LP-M06-00-001tas Deseription: 2uM

700 1*ﬁ

Intensity

*

3D-structure of immunoglobulin

T T T T T
20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 m=

For the detailed analysis of a protein, not only the intact protein but also enzymatic digest of the protein can be analyzed. Peptide mass
fingerprinting allows identification of a protein.

Mass spectrum of the tryptic digest of bovine serum albumin (BSA) and the results of the peptide

mass fingerprinting.

Mass spectrum of BSA tryptic digest standard (equivalent to 500 amol)

75 570

* 3D-structure of RCSB PDB (www.rcsb.org) ID 1IGY (Harris, L.J., et al. (1998) J.Mol.Biol. 275: 861-872) created with Protein Workshop
(Moreland, et al. (2005) BMC Bioinformatics 6:21).
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For more detailed amino acid sequence determination, MS/MS lon Search is available. More accurate protein identification
is possible with MS/MS lon Search as proteins are identified based on the amino acid sequences of the enzymatic digests.
With the LC-MALDI method, analysis of low abundance peptides or analysis of a mixture of peptides are possible. lon
suppression is significantly reduced as peptides are fractionated by LC.

LC-MALDI analysis of the enzymatic digest of a protein mixture and identification of the proteins by

MASCOT MS/MS lon Search

MALDI mass spectrum of the tryptic digests of bovine serum albumin and chicken egg ovalbumin.

120 1 Peptides at m/z 1248.6 and m/z 1249.6 cannot be differentiated when the
mixture is directly analyzed without preseparation.
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The result of the LC-MALDI analysis by fractionating the peptide mixture with HPLC (Survey View heat map.)
More peptides were observed by fractionating the mixture with HPLC as ion suppression was significantly reduced.
Peptides at m/z 1248.6 and m/z 1249.6, which could not be differentiated in the mass spectrum of the mixture, are clearly separated.
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A Wide Range of Applications

Peptides

With the TOF-TOF option, de-novo sequencing of an unknown peptide that is not present in the database is possible.
With HE-CID fragmentation, an amino acid sequence from the precursor ion down to immonium ions can be determined.
Leucine and isoleucine are known to be differentiated with HE-CID*.

Amino acid sequence determination of renin substrate tetradecapeptide (MSTips No. 180)

Asp-Arg-Val-Tyr-lle-His-Pro-Phe-His-Leu-Leu-Val-Tyr-Ser

[ [M+H]
L ab
His
b= . <P
. His
Immonium
-a\ = ion T lle ¢ ’
e — FELLLES s a8
s ad a5 Phe
= ~—a
L Val ) Pro
Asp, Arg ¢ al a7
b2-NH, daj
iul.u ||;J | L.| l‘f n l.l;)LLi ld__. _L‘llll t].n.ll d y
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d10 a
1208 1250
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db5 |
605 14
Ll A ab JC i : l\ o
600 1200 1250
miz m/z
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Leucine and isoleucine can be differentiated by the d ions derived from side chain fragmentation.

* Kitanaka, A., et al., N-Terminal Derivatization with Structures Having High Proton Affinity for Discrimination between Leu and lle
Residues in Peptides by High-Energy Collision-Induced Dissociation, Mass Spectrometry, 5, AOO51,
doi: 10.5702/massspectrometry.A0051 (2016)
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A Wide Range of Applications -
Natural Products

HE-CID can be utilized for the structural elucidation of natural products as a complementary technique for NMR, which
provides a wealth of structural information. With the SpiralTOF™-plus 2.0, the accurate mass measurement facilitates
elemental composition determination of unknowns. With the TOF-TOF option, the product ion mass spectrum for the
mono-isotopically selected precursor ion can be measured. Mono-isotopic selection of the precursor ion facilitates
unambiguous interpretation of the product ion mass spectrum since all of the product ions observed are also mono-

isotopic.
Structural elucidation of brevisulcenal-F*
1. Accurate mass measurement for elemental composition 2. Derivatization to facilitate charge remote fragmentation

determination

2076.04756
KBT-F [M+Na]*
Formula: C107H160038Na S0,Na SO3Na
Calculated: m/z 2076.04798
Measured: m/z 2076.04756
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3. Acquisition and analysis of the product ion mass spectrum
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* Hamamoto, Y. et al. Brevisulcenal-F: A polycyclic ether toxin associated with massive fish-kills in New Zealand. Journal of the American Chemical Society 134, 4963-4968,
doi:10.1021/ja212116q (2012).
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A Wide Range of Applications ’ &

Lipids

Why is the SpiralTOF™-plus 2.0 good at analyzing lipids?

Lipid molecules contain fatty acids and alkyl chains. Within a class of lipids, there is a wide variety of compounds
due to the difference in alkyl chain length and number of double bonds. The molecular mass shifts 14 u with one
methylene group and -2 u with one double bond. The SpiralTOF™-plus 2.0 with TOF-TOF option can completely
isolate precursor ions that differ by 2 u - an essential feature required for the detailed structural analysis of a lipid
mixture by tandem mass spectrometry. HE-CID can fragment C-C bonds in alkyl chains due to charge remote
fragmentation, and double bond positions can be elucidated due to the fact that they are harder to cleave.

Analysis of phospholipids in hen egg yolk (MSTips No.185)

Lipids in hen egg yolk were extracted and analyzed in positive ion mode. A variety of phosphatidylcholines (PCs) were detected in the sample.

In the example below, the product ion mass spectrum from the protonated molecule [M+H]+ was acquired for PC(34:1). Product ions
derived from the fragmentations within the fatty acid chains were observed, which provided the information necessary for determining the
fatty acid composition and double bond position.

MALDI mass spectrum of phospholipids from hen egg yolk

x108 ; PC(34:1)
| M+H]*
120_. P[:S;:]f) 760583 PC(36:2) PC: phosphatidylcholine
] - [M+H]* PE: phosphatidylethanolamine
758,568 PC(34:1) PC(36:1)
z | [M+Na]* [M+H]
w
H 080 782.567 PC(36:1)
£ [M+Na]*
] 810599
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1550 h l I' | l 834.600
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HE-CID product ion mass spectrum of PC(34:1)
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Analysis of ganglioside GM1 (ovine brain) (MSTips No.187)

Ganglioside GM1, a glycolipid abundant in brain and nerve cells, was analyzed in negative ion mode. Product ions derived from the
cleavage within the fatty acid and ceramide were observed in the product ion mass spectrum of the deprotonated molecule [M-H]™. The
composition of the fatty acid and ceramide as well as the structure of the glycan were determined with this method.

MALDI mass spectrum of GM1
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HE-CID product ion mass spectrum of GM1. The region showing product ion peaks derived from charge remote
fragmentation is shown at the bottom.

aot 004
500
2
400 &
2 z
i 200 §§ @
B . -
3 é"»l%’ §§a§§§’§§§J
T L Jl__l. stbiadiiedie Lt LG L Ly
300 400 500 800 700 800 900 g0 1100 1200 1300 1400 1500 G m

Intensity

The structure and fragmentation of GM1

1410.8 9703

178.7 11 -y
oH{ s ¢ oy #h'1-%C,0H C,oH M
2 bel g i i 27 i 1
[o] o o O+ 0 ——0 rHO+Ceramide
on L Yi© P }\0 H P
F
I I 2 | %83
OH NHAc ~ OH §%53} OH
us o un e
SIS
] 1 1 ) 1 1
1 1 ] ] ] ]
[ 1] ] [ 1 ] 1 ]
S VOV e
/\!‘\/ ] 1 [ [ 1 1 [
I 1] 1 I 1 ] 1 ]
o} PP S R =l gl 1
1402 | 1430 | 1458 | 1486 | 1514 |
+=1 =i =i

= -+
1416 1444 1472 1500 1528

JMS-S8000 SpiralTOF™-plus 2.0 | 24



(u

A Wide Range of Applications
Pharmaceuticals
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With the high mass-resolving power of the SpiralTOF™-plus 2.0, accurate spatial distributions for pharmaceuticals and their
metabolites in a tissue section can be determined despite the presence of abundant interfering compounds in the tissue.
HE-CID product ion mass spectra can be directly acquired from the tissue section, facilitating the structural identification of
the target analytes.

Analysis of terfenadine and its metabolite, fexofenadine, in a mouse kidney section (MSTips No. 212)

Mass spectral peak and MS image of terfenadine Mass spectral peak and MS image of fexofenadine
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Averaged mass spectrum of a mouse kidney section that w!&administered terfenadine.
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HE-CID product ion mass spectra of terfenadine and fexofenadine.

MS/MS analysis allows structural elucidations of compounds on a tissue section.
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(Specimen courtesy of the pharmacokineti
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For MS imaging

N T

Adapter for glass sample plate For ITO glass sample plates (Hudson Surface Technology; HST)
Target plates [TO glass sample plate Slide glass, 0.7 mm thick, 25 pc/pkg
Multi-target plate For thick specimens

Indentations for 0.5 mm thick and 1.0 mm thick specimens.

MS-56530MSI 1D (line) scan and 2D scan (imaging) data acquisition.

MS Imaging Support Program Convert MS imaging raw data into imzML format.

msMicrolmager™ Read MS imaging raw data acquired by msTormado™ Control. Perform pixel binning.

MS-66550MSIV Extract and export MS images. Export mass spectra of the regions of interest.
Software MS Imaging Viewer Program Browse MS images. Change color map of the images.

Perform arithmetic operations between MS images. Overlay MS images.
Generation of images based on average molecular weight and polydispersity.

SCILS Lab MVS (Bruker Daltonik GmibH) Comparative analysis, co-localization analysis, spatial segmentation, component analysis,
classification model calculation, organizational quantification

For polymer analysis

|| Modermame | oDescipton |

96-spot hairline finish plate Suitable for use with organic solvents.
Target plates Adapter for uFocus plates (HST) The adapter to hold and use p Focus plates (HST).
Various one-time use plates (HST) One-time use plates by HST
msRepeatFinder Import peak list (centroided mass spectrum). Display a centroided mass spectrum.
MS-56560REP Create KMD plot, KMR plot, Fraction Base KMD plot, and RKM plot.
Software Repeating Structure Analysis Program Grouping (coloring, calculate relative ion intensity w.r.t. sum of all groups, calculate

average molecular weights)
Elucidate elemental composition of monomer and end group. 2 sample comparison function.

Installation requirements

Power supply* Installation room
Mass spectrometer ~ Single phase Floor space 3200 mmx2400 mm
(including RP) AC200 V or 220-240 V, 50 Hz, 30 A Static magnetic field 5x10T or less
AC200V-210V or 230-240'V, 60 Hz, 30 A Variable magnetic field 1x10°T or less
Data system Single phase Floor vibration
AC 100-240V, 50-60 Hz, 15 A Amplitude (p-p) 25 pm or less
Grounding 100 Q or less Acceleration 0.1 m/s” or less
POWER BOARD
GAS LINE (N) Gas supply Room temperature
/ el @ Nitrogen gas Temperature range 201027 °C
e " o
//_ 3 Prossure 0.4520.05 MPa Tempereiure stabilty 3“0/ or befter
3 1000 i — Purty 97% or better Maxwmgm heat generation 20,300 kJ/h (MS+data system)
8 1 @ Heiium gas for CID (for TOF-TOF optior) Humidty 8010 70% (o condensation)
Pressure 0.45:0.05 MPa Ventilation facility required for the rotary pump
IEI A Purity 99.999% or better
8 = ® Argon gas for GD for TOF-TOF opt\om) * For details of installation requirements, please inquire a local
= Pressure 045005 MPa sales office for details.
o Purity 99.9 % or better
Q * Power supply requirement depends on specific configuration sold in each territory. Please inquire a local sales office for details.
DOOR Width Depth Height Weight
1 000 (mm) (mm) (mm) (ka)
- MALDI-TOF basic unit 1190 765
3,200 +TOF-TOF option 1920 874
. - 1300 1000
0 1m 2m +Linear TOF option 1920 775
Lovsatonnslossalonnsl +TOF-TOF+Linear TOF 1920 884
Rotary pump 158 491 261 26.3
LCD monitor 506 253 a77 8.5
PC 168 456 450 161

To place the rotary pump (RP) behind the basic unit, the distance from the rear of the basic unit to the room wall must be 600 mm or more.
® An exhaust duct or port is needed for the rotary pump (RP).
® The table for PC and printer must be provided by the customer.
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Certain products in this brochure are controlled under the “Foreign Exchange and Foreign
Trade Law” of Japan in compliance with international security export control. JEOL Ltd. must
provide the Japanese Government with “End-user’s Statement of Assurance” and “End-use
Certificate” in order to obtain the export license needed for export from Japan. If the product
to be exported is in this category, the end user will be asked to fill in these certificate forms.

3-1-2 Musashino Akishima Tokyo 196-8558 Japan Sales Division Tel. +81-3-6262-3560 Fax. +81-3-6262-3577
‘JEDLD ‘J EOL Ltd' www.jeol.com 1SO 9001 - ISO 14001 Certified
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